Topological Classification of Multiaxial U(n)-Actions

نویسندگان

  • Jared Bass
  • Sylvain Cappell
  • Shmuel Weinberger
  • Min Yan
چکیده

Since early 1980s, great progress has been made on the classification of finite group actions on the sphere. Deep but indirect connections to representation theory were discovered. The indirectness is reflected by the existence of non-linear similarities between some linearly inequivalent representations [3], via the equivariant signature operator [MR] (see also [HP??] [4]). Whitehead torsion, which was the cornerstone of the classical theory of lens spaces, plays almost no role at all, especially in the presence of fixed points [12, 13]. On the other hand, the action of positive dimensional groups on topological manifolds has been largely left alone, aside from action by the circle. This paper, inspired by the beautiful results of M. Davis and W. C. Hsiang [8] on concordance classes of smooth multiaxial actions on the homotopy sphere, shows that the classification theory in the topological setting is both completely different and quite comprehensible. For the purposes of this introduction, we will assume that G = U(n) acts on M locally smoothly. In other words, every orbit has a neighborhood equivariantly homeomorphic to an open subset of an orthogonal representation of G. We will concentrate on multiaxial actions, which means that the representations are of the form kρn ⊕ j , where ρn is the defining representation of U(n) on C, and is the trivial representation R. While this may allow different choice of k and j at different locations in the manifold, the results

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological centers of the n-th dual of module actions

We study the topological centers of $nth$ dual of Banach $mathcal{A}$-modules and we extend some propositions from Lau and "{U}lger into $n-th$ dual of Banach $mathcal{A}-modules$ where $ngeq 0$ is even number. Let   $mathcal{B}$   be a Banach  $mathcal{A}-bimodule$. By using some new conditions, we show that $ Z^ell_{mathcal{A}^{(n)}}(mathcal{B}^{(n)})=mathcal{B}^{(n)}$ and $ Z^ell_{mathcal{B}...

متن کامل

Topological Centers and Factorization of Certain Module Actions

Let $A$ be a Banach algebra and $X$ be a Banach $A$-bimodule with the left and right module actions $pi_ell: Atimes Xrightarrow X$ and $pi_r: Xtimes Arightarrow X$, respectively. In this paper, we  study  the topological centers of the left module action $pi_{ell_n}: Atimes X^{(n)}rightarrow X^{(n)}$ and the right module action $pi_{r_n}:X^{(n)}times Arightarrow X^{(n)}$,  which inherit from th...

متن کامل

Some notes for topological centers on the duals of Banach algebras

We introduce  the weak topological centers of left and right module actions and we study some of their properties.  We investigate the relationship between these new concepts and the  topological centers of of left and right module actions with some results in the group algebras.

متن کامل

On the topological centers of module actions

In this paper, we  study the Arens regularity properties of module actions. We investigate some properties of topological centers of module actions ${Z}^ell_{B^{**}}(A^{**})$ and  ${Z}^ell_{A^{**}}(B^{**})$ with some conclusions in group algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012